Processing visual stimuli using hierarchical spiking neural networks

نویسندگان

  • Qingxiang Wu
  • T. Martin McGinnity
  • Liam P. Maguire
  • Ammar Belatreche
  • Brendan P. Glackin
چکیده

Based on spiking neuron models and different receptive field models, hierarchical networks are proposed to process visual stimuli, in which multiple overlapped objects are represented by different orientation bars. The main purpose of this paper is to show that hierarchical spiking neural networks are able to segment the objects and bind their pixels to form shapes of objects using local excitatory lateral connections. The presented architecture is based on biologically inspired hierarchical structures. Segmentation is achieved through temporal correlation of neuron activities. The properties of these networks are demonstrated using a series of visual scenes representing different stimuli settings. r 2008 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A visual attention model based on hierarchical spiking neural networks

Based on the information processing functionalities of spiking neurons, hierarchical spiking neural networks are proposed to simulate visual attention. Using spiking neural networks inspired by the visual system, an image can be decomposed into multiple visual image components. Based on specific visual image components and image features, a visual attention system is proposed to extract attenti...

متن کامل

Simulation of Visual Attention Using Hierarchical Spiking Neural Networks

Based on the information processing functionalities of spiking neurons, a hierarchical spiking neural network model is proposed to simulate visual attention. The network is constructed with a conductance-based integrate-and-fire neuron model and a set of specific receptive fields in different levels. The simulation algorithm and properties of the network are detailed in this paper. Simulation r...

متن کامل

Spiking Hierarchical Neural Network for Corner Detection

To enable fast reliable feature matching or tracking in scenes, features need to be discrete and meaningful, and hence corner detection is often used for this purpose. We present a new approach to corner detection inspired by the structure and behaviour of the human visual system, which uses spiking neural networks. Standard digital images are processed and converted to spikes in a manner simil...

متن کامل

Aircraft Visual Identification by Neural Networks

In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...

متن کامل

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008